6 research outputs found

    Multi-Objective Task Scheduling Approach for Fog Computing

    Get PDF
    Despite the remarkable work conducted to improve fog computing applications’ efficiency, the task scheduling problem in such an environment is still a big challenge. Optimizing the task scheduling in these applications, i.e. critical healthcare applications, smart cities, and transportation is urgent to save energy, improve the quality of service, reduce the carbon emission rate, and improve the flow time. As proposed in much recent work, dealing with this problem as a single objective problem did not get the desired results. As a result, this paper presents a new multi-objective approach based on integrating the marine predator’s algorithm with the polynomial mutation mechanism (MHMPA) for task scheduling in fog computing environments. In the proposed algorithm, a trade-off between the makespan and the carbon emission ratio based on the Pareto optimality is produced. An external archive is utilized to store the non-dominated solutions generated from the optimization process. Also, another improved version based on the marine predator’s algorithm (MIMPA) by using the Cauchy distribution instead of the Gaussian distribution with the levy Flight to increase the algorithm’s convergence with avoiding stuck into local minima as possible is investigated in this manuscript. The experimental outcomes proved the superiority of the MIMPA over the standard one under various performance metrics. However, the MIMPA couldn’t overcome the MHMPA even after integrating the polynomial mutation strategy with the improved version. Furthermore, several well-known robust multi-objective optimization algorithms are used to test the efficacy of the proposed method. The experiment outcomes show that MHMPA could achieve better outcomes for the various employed performance metrics: Flow time, carbon emission rate, energy, and makespan with an improvement percentage of 414, 27257.46, 64151, and 2 for those metrics, respectively, compared to the second-best compared algorithm

    An Improved Binary Grey-Wolf Optimizer with Simulated Annealing for Feature Selection

    Get PDF
    This paper proposes improvements to the binary grey-wolf optimizer (BGWO) to solve the feature selection (FS) problem associated with high data dimensionality, irrelevant, noisy, and redundant data that will then allow machine learning algorithms to attain better classification/clustering accuracy in less training time. We propose three variants of BGWO in addition to the standard variant, applying different transfer functions to tackle the FS problem. Because BGWO generates continuous values and FS needs discrete values, a number of V-shaped, S-shaped, and U-shaped transfer functions were investigated for incorporation with BGWO to convert their continuous values to binary. After investigation, we note that the performance of BGWO is affected by the selection of the transfer function. Then, in the first variant, we look to reduce the local minima problem by integrating an exploration capability to update the position of the grey wolf randomly within the search space with a certain probability; this variant was abbreviated as IBGWO. Consequently, a novel mutation strategy is proposed to select a number of the worst grey wolves in the population which are updated toward the best solution and randomly within the search space based on a certain probability to determine if the update is either toward the best or randomly. The number of the worst grey wolf selected by this strategy is linearly increased with the iteration. Finally, this strategy is combined with IBGWO to produce the second variant of BGWO that was abbreviated as LIBGWO. In the last variant, simulated annealing (SA) was integrated with LIBGWO to search around the best-so-far solution at the end of each iteration in order to identify better solutions. The performance of the proposed variants was validated on 32 datasets taken from the UCI repository and compared with six wrapper feature selection methods. The experiments show the superiority of the proposed improved variants in producing better classification accuracy than the other selected wrapper feature selection algorithms

    Recognition of phonetic Arabic figures via wavelet based Mel Frequency Cepstrum using HMMs

    No full text
    This work describes the recognition of phonetic Arabic figures. Speech recognition technology has made steady progress in its 50 years history and has succeeded in creating several substantial applications. The goal of speech recognition research is to produce a machine which will recognize accurately the normal human speech from any speaker. To improve the performance of recognition system, an effective and robust technique is proposed to extract speech feature. The input speech signal is decomposed into various frequency channels based on time-frequency multi-resolution property of wavelet analysis. For capturing the characteristics of the signal, the Mel-Frequency Cepstrum Coefficients “MFCCs” of the wavelet channels are calculated. Hidden Markov Models “HMMs” were used for the recognition stage. Different forms of wavelet functions were used to evaluate the best wavelet signal to extract the best features of the signals. It is found that the wavelet signal “db8” gives the highest values of recognition accuracy rate. A recognition rate of 98% was obtained using the proposed feature extraction technique. A comparison between different features of speech is given. The features based on the Cepstrum give accuracy of 94% for speech recognition while the features based on the short time energy in time domain give accuracy of 92%. The features based on formant frequencies give accuracy of 95.5%. It is clear that the features based on MFCCs with accuracy of 98% give the best accuracy rate. So the features depend on MFCCs with HMMs may be recommended for recognition of the spoken Arabic digits
    corecore